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ABSTRACT 

t

A new algorithm for solving FEM problems is presented. It blends a

preconditioned conjugate gradient iteration into a direct factorization

method. The goal was to reduce fill to a negligible level and thus reduce

storage requirements but it turned out to be faster than its rivals for an

importent class of problems.
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1. INTRODUCTION

The numerical method proposed here differs in a single but critical

aspect from the one-way dissection algorithm described by Alan George

in [George, 1980]. We have been using a dissection procedure for irregular

domains which is close to his and so we can simplify our report by focussing

on the point of difference and its consequences.

The problem we both address is the solution of an N by N linear system

Ax = b arising in the application of finite element methods. In particular

we assume that A is symmetric, positive definite, and sparse.

Although nested dissection schemes are, in various ways, asymptotically

optimal their preeminence is not apparent for values of N as small as 10.

Consequently one-way dissection ordering schemes are also worthy of study.

The use of one-way schemes is illustrated by considering block 2 by 2

matri ces

[A11  E with A.. = L.LT, i = 1,2.
A E A2 j21 1

In the course of solving Ax = b by a direct method we must solve, explicitly

or implicitly, a reduced system involving the Gauss transform, namely

(1) A22 = 22 - 11
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Recently George and Liu [Computer Solution of Large Sparse Positive Definite

Systems, 1981] have shown a clever way of computing the Cholesky factorL2

II
of A 11 . Of course E2will be denser than A 22.

Our preference however, is to solve the subsystem (1) iteratively, using

preconditioned conjugate gradients (CG), without ever forming A22 explicitly.

Our method requires storage for L1, L2 and E .Convergence of the iteration

is governed by a matrix

T~ -T
W = I - C CT where C L 2  E L

as described in the next section.

There are node orderings in which A 11  and A 22  are dense banded

matrices and in these cases there is no fill at all. On other occasions it

pays to allow a little fill in L1  and L2  within the band. We follow

George in using the word fill rather than fill-in.

Although in general we are prepared to sacrifice some execution time in

order to economize on storage we have not had to give up any speed on any of

the problems we have tackled so far. On the contrary, our method is signifi-

cantly quicker than its obvious rivals. Details are in Section 3.

At this point we must say a word about the "sin" of invoking an iteration

in the middle of a respectable direct method. We have been so impressed by

all the effort and ingenuity which has been expended on reducing fill during



Gaussian elimination that we succumbed to the temptation to get rid of

fill either completely, or almost completely.

It will occur to the reader that a more natural way to avoid fill is to

solve the original system Ax =b by an iterative technique such as CG.

Yet even when the system is preconditioned by the matrix diag (Al1 9 A 22)

CG is at least twice as slow as our hybrid method.

Of course, a direct method will be quicker when there are many right

hand sides. When there are few then the hybrid method is comparable in

arithmetic work besides demanding less storage.

The success of our approach depends on the extent to which A22 'Is a

good preconditioner for A 22 . In Section 2 we analyze the model problem,

in part because the analysis can be done quite swiftly with pencil and paper.

We show that even simple-minded orderings yield lower arithmetic costs,

O (Ni1.5) than comparable direct methods, namely O(N1.75 ) for one-way

dissection and 0(N2) for profile solvers. In Section 3 we show the results

of several methods on a few realistic problems, including the deflection

of a folded plate structure which poses a severe test for our method because

of its large condition number. In Section 4 we discuss the efficiency of

various methods.

A novel feature of the hybrid approach is that it leads to the search

for orderings which keeps A dense around the main diagonal, neither smallI envelope nor narrow bandwidth are important attributes in this approach.

IMM



It has not escpaed our attention that it is possible to use a somewhat

more powerful but also more complicated preconditioner than A22  for solving

A2 2 x2 = c2 . Both this possibility and the application of these ideas to

3-D problems are under investigation.

2. APPLICATION TO THE MODEL PROBLEM

Consider the 5 point Laplacian operator Ah acting on a regular square

grid with m2  unknowns and h = I/(m+l) . There exist very efficient special

methods for solving this special problem -Ah u = f and the only reasons for

considering it here are (1) we can obtain the convergence rate analytically

and (2) we get an understanding of how our algorithm behaves.

In order to keep the analysis simple we use a less than optimal ordering

in which all the nodes in the odd columns are numbered before the nodes in

the even columns, as shown in Fig. 1.

The matrix representation of -A h which arises from this ordering is

shown below.

D

~i~421  j:A E LE2
A :D -11A

-I-I. D E A2

-I D

- - .-- . -



Here D is a m x m tridiagonal Toeplitz matrix with nonzero elements

(-1, 4, -1). The condition number of A is known,

Cond A - 1 + cos Th
-cos h h = 1/(m + 1).

: cot 2 (,h/2) 4/7r2h2 , for small h

Let the Cholesky factor of Aj be Lj ;Ajj = LjLT ,j 1,2. Note that

there is no fill when forming L. Our algorithm uses the preconditioned

conjugate gradient iteration to solve equations with coefficient matrix

A2 2  E A'. E T

The matrix which governs tha itraton is

W = I - (L21 E L1
T ) (L 1 E 'T L2T

and the convergence rate may be bounded in terms of cond (W). Next we

determine the largest and smallest eigenvalues of W in the easy case when

A11 = A22 = H~nm is even, and L1 = L2 = L

Note that W is similar to another symmetric matrix W = L W L_ =

I - E H-l ET H1I On writing out E H-1 ET H-1  it is seen to be a block

tridiagonal Toeplitz matrix with nonzero blocks

( D 2 , 2D2 , 2 )

except for the last block row which is

jri



(0, ... , ,- 2 , D2 ).

This matrix is a Kronecker (or tensor ) product TO D-2 where T is the

m/2 by m/2 tridiagonal Toeplitz matrix with nonzero elements (1, 2, 1),

except for its last row which is (0, ... 0 ,, 1, 1).

The eigenvalues of T and D are well known. See [Gregory and Karney,

p. 137] to verify the following, using h 1/(m + 1)

Xk (T) = 2 (1 + cos 2k-h) , k = 1, ... , m/2

2 -2
(D- ) (4 - 2 cos jxrh) , j = , ..... m

The e , .,,, of T 0 D-2 are the m2/2 products of eigenvalues of T

and eigenvalues of D-2. Using cos mrh = -cos ,7h = 2 sin 2 7h/2 - 1 we find

Xmin (ToD 2) 4 sin 2 (t h [6 (I - 1 sin 2  2 )-2

1 2
T (,h) , for small h

Xmax (TO D 2) = 4 cos 2  (-h) * [2 (l + 2 sin 2 i-r ) 2

2 2 222(1 - ) ( 1 - 2h2) , for small h .

In conclusion

cond (W) = - min (T®D- 2)

I - Nmax (TOD-
2 )

1 - ' (
rr h) 2

2(Trh)
2-



1/2 (h) 2  for small h

In other words

cond (W) cond (A)/8

Perhaps this last comparison is unfair. If preconditioning is applied

to the Gauss Transform matrix A22 - E A-I ET it should also be applied to A

It gives the same convergence rate as ordinary CG applied to the matrix

=LC CT]

where C = L I E LT and LLT A11  = A22

To each eigenvalue x of CCT , determined above, correspond eigenvalues

± / of - I . It follows that

1 +
cond () max

1 - / Xmax (TOD -7 )

#2 - Cmh) 2  2
2 when h is small.

(Th) 2  (i)

Thus, for small h,

cond (W) cond (A) / 4 cond (A) / 8.

The condition number yields a crude upper bound on the convergence rate

of CG. The standard theory, in [Hestenes and Stiefel, 1952], asserts that



when CG is applied in exact arithmetic using a positive definite matrix M

then the energy norm of the residual r , i.e., !rT M-1 r , is reduced

after k steps by at least a factor of

V ___cond (MT- 1 k

/cond (M) + 1

However for k > order (M)/2 this bound is much too big. In our case for

small h and modest k the reduction factor per step is at least

1 - rh , for A,

1 - for A,

I - -h2vT , for W

In other words CG with W requires half the number of steps used by

CG with A . One step with W requires less work than one step with T

and so our hybrid method is more efficient than "pure" preconditioned CG

on A for the model problem. Our tests bear this out.

The standard theory given above for estimating convergence is exact

only for the Chebyshev - like distribution of eigenvalues of A . In the

model problem the eigenvalues are known and more refined bounds can be

obtained. For example after k steps the residual norm will have been

reduced by at least

(X N 2) (XN X3) 1

1 - X2 -0 ) (x3  0) Tk- 3 (XN + )

The eigenvalues Ai satisfy 0 < 'l < X2 < ... < N

1I



1 - 12 (7h) 2  k 350 (nh) 2  (1 44f h k -

50(i 2

Here Tk is the Chebyshev polynomial of degree k

Table I gives the predicted number of steps S and the actual number
p

of steps Sa needed to reduce the residual norm to 10-6 of its original

value. The refined bounds (using All A2 , A3 1 4) are given in parenthesis.

Recall that m + 1 = 1/h . An unsymmetric load was used for the right hand

side.

TABLE 1

m + I m = m2  Cond (W) Sp Sa

20 361 20.79 31 (19) 19

40 1521 81.58 63 (37) 36

80 6241 324.8 124 (77) 66

We turn next to direct methods. These require more storage and have

significant advantages when many right hand sides are given. Here we con-

sider only the execution costs for one right hand side.

Our numerical tests showed that the standard profile or envelope schemes,

found so often in finite element packages, were significantly slower. The

greater the value of N the slower they were relative to N . The reason

is simple. Envelope methods require O(N 2) operations On the other hand

the hybrid scheme needs O(NI 5) ; each step requires O(N) operations



and the number of iterations required to converge to working precision is

O(h) O (m) = 0(N1 ~ for the model problem.

Of course. the coefficients of these leading terms are needed to complete

the picture. Our tests suggest that for direct and hybrid methods the

coefficients are the same order of magnitude. Even for m = 20 the hybrid

method was twice as fast as the envelope (or profile) Cholesky factorization

algorithm.

We have not compared our method with George's One Way Dissection algorithm

on the model problem but we expect his to be halfway between ours and the

envelope algorithm because George has shown that the number of operations

is O(N 1.75 ) for the model problem.

We have not given precise comparisons because we do not think that too

much weight should be given to the model problem. It is useful in giving

insight into the algorithms but it is no benchmark.

In the next section we take up more realistic applications.

3. NUMERICAL EXAMPLES

In this section we compare the hybrid method (called H) described earlier,

with the one-way dissection method (called IWD). The test problems used for

this comparison are typical of those found in finite element structural

analysis. More detailed illustrations of these problems are provided in Figs.

2 and 3 .We are aware that a certain method may perform better than all others



when applied to a narrow class of problems, and a truer evaluation of the

method can only come from a much wider bed of test problems. We will try

to point out any bias in our test problems. In any case, they do represent

an area where sparse techniques are applied extensively.

In the following tables an 'operation' means a multiplication followed

by an addition. Comparisons between execution times were avoided because

these times depend very much on the implementations of the algorithms and some-

what on the computer system that is used.

The first set of results was obtained by applying the two methods (IWD & H)

to the following:

(i) A plane stress problem producing a matrix of the form

shown in Fig. 2. This involves Poisson's equation

- Au = f

with both Dirichlet and Neumann bounary conditions.

(ii) The fourth order biharmonic equation

A2u = f

inside a rectangular domain with a similar mixed

boundary condition. This corresponds to a partially

clamped plate problem.

(iii) A folded plate structure is a more practical one and

we feel this problem is a crucial test of our method.
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These problems have a very large condition number and

traditionally iterative methods have not been used

because of their depressing rates of convergence.

The domain was discretized using a finite element mesh. Three different

node orderings were applied to the mesh and the resulting system of equations

was solved, for each ordering, using the above methods. In [2] Alan George

derived an expression for the ratio order (All) : order (A22) . Based on

this, we found that the optimum ratio in (i) and (ii) for IWD and H is about

3:1. In (i) and (ii) the right hand side of the equation (load vector) was

physically symmetric. This results in a somewhat faster convergence rate

than for a general right handside. An unsymmetric load vector increases the

number of iterations by about 30%.

In all the test problems the tolerance on the residual norm was set at

computer precision and the initial vector was chosen as a zero vector. Of

course for a lower tolerance and a better initial vector the number of itera-

tions will be smaller.

Storage

The hybrid method H requires a total of NZA + ( + 4n)N storage

cells when conjugate gradient is used for the iterative part. NZA is the

total number of non-zero terms in A and n = order (A22)/order (A) and for

11the ordering described in Ref. (1), 0 < n < . Therefore the hybrid

method will require fewer than y (NZA + 7N) storage cells. This compares1i

with (NZA + 11 N) for the conjugate gradient method with no preconditioning.

Thus there is some justice in saying that H gets by with minimal storage.



Arithmetic Work

Although the number of iterations required to converge is problem

dependent (it depends on the eigenvalue distribution of the matrix), the

examples presented here demonstrate a substantial saving in operation counts

and we feel this will be true for a very large class of finite element problems.

Table (2) - Comparison of the Direct and Hybrid Method for the Plane
Stress Problem (N = 220)

Direct Method Hybrid Method
IWD H

no. of oper. no. of oper.
x 103  storage no. of its. x l03  storage

1/2 702 4982 30 136 2396

1/3 351 3432 23 100 2264

1/4 216 2810 19 84.4 2278

profile 85.8 5382 -- -- --

(50.8) (4726)

Table (3) - Comparison of the Direct and Hybrid Method for the
Plate Problem (N = 330)

Direct Method Hybrid Method
1WD H

n no. of Oper. s . no. of oper. s
X lO storage no. o is. x 13 sorage

1/2 2375 11027 45 425 4890

1/3 1185 7585 35 319 4698

1/4 730 6240 26 245 4779

profile 275 12110 -- -- --

(172) (10551)

For the profile method the numbers within parenthesis are exact numbers

obtained through computations.

MAW&



Table (4) - Comparison of the Direct and Hybrid Method for the
Folded Plate Structure (N = 1109)

Direct Method Hybrid Method
1WD H

n no. of oper. no. of oper.
x 106 storage no. of its. X 106  storage

1/2 90.0 90440 209 11.2 29600

1/5 27.3 44300 130 7.0 29600

profile 14.0 110900 - --

4. EFFICIENCY

The step counts for the model problem, aiven in Table 1, are greater

than they need be. For the sake of an elegant analysis we took the ratio

p = order (A11 ) : order (A2 2) to be 1:1. This ratio depends on the number

of separators used in the node ordering phase which is described in [2].

For a reactangular domain a typical choice might designate columns 4, 8, 12,

as separators with the result that

n = order (A29) 1

N 4

There would be a little fill in the Cholesky factors L and L, whose

half-band widths enlarge to 4, but the cost of each step in the iteration is

essentially independent of n . Thus the operation count depends on S

the number of steps, which in turn depends on cond (W) . We do not have

a formula for cond (W) when n -L or 1 but empirically we find that

cond (W) n • Thus to compare two schemes, corresponding to n and n'

we use

I



On the model problem the step counts in Table 1 were indeed reduced by

factors of /2-/3 and /2/4 when we tried n = 1/3 and n =1/4.

What is interesting is that we found the same reduction for the same

values on the 4th order problem of Section 3. We have no explanation forI

Our experience with our hybrid method is limited but in order to

sharpen discussion we will make some comparisons, at least for 2-D problems.

Profile (or envelope) solvers are very attractive for small problems

(say 200 equations) and they can be included in our hybrid program by

choosing ni = 0 (no separators). Of course the small operation count is

offset by considerable storage demands. For the model problem the hybrid

scheme needs O(N 15) operations while profile solvers need O(N 2) operations.

The break even point appears to be close to N = 600. Consequently we choose

this value as the upper limit for small problems.

Our ratings are given in Table 5 which is based on the results, in

Table 3, for the partially clamped plate problem.



Table 5. Rating of Methods for 2-D Problems on Souare Domains
with Regular Meshes. I Best. NE = number of equations.

Small Medium Large

N.E. < 600 600 < N.E. < 105 105 < N.E.

storage speed storage speed storage speed

One Way 2 3 2 3 2 2

Dissection 
,22

Hybrid 1 2 1 1 1 1

Profile 3 1 3 2 3 3

Comments on Table 5

1. For a tree-like domain the hybrid and one way dissection methods win

over the profile method much sooner.

2. Profile solvers are good for long narrow domains.

3. Hybrid always dominates one-way dissection.
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Fig. 2 The Regular Rectangular Mesh Used in the Plane Stress and Plate Problemswith Different Node Ordering and the Resulting Matrix Structures.
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Fig. 3(a) Different Matrix Structures Induced by Two Different Node Orderings
of the Folded Plate Structure Below.
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Fig. 3(b) Finite Element Discretizatlon of the Folded Plate Structure.
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